首页> 外文OA文献 >Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes
【2h】

Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

机译:蛋白质复合物预测方法及其对蛋白质的贡献   了解复合体的组织,功能和动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complexes of physically interacting proteins constitute fundamentalfunctional units responsible for driving biological processes within cells. Afaithful reconstruction of the entire set of complexes is therefore essentialto understand the functional organization of cells. In this review, we discussthe key contributions of computational methods developed till date(approximately between 2003 and 2015) for identifying complexes from thenetwork of interacting proteins (PPI network). We evaluate in depth theperformance of these methods on PPI datasets from yeast, and highlightchallenges faced by these methods, in particular detection of sparse and smallor sub- complexes and discerning of overlapping complexes. We describe methodsfor integrating diverse information including expression profiles and 3Dstructures of proteins with PPI networks to understand the dynamics of complexformation, for instance, of time-based assembly of complex subunits andformation of fuzzy complexes from intrinsically disordered proteins. Finally,we discuss methods for identifying dysfunctional complexes in human diseases,an application that is proving invaluable to understand disease mechanisms andto discover novel therapeutic targets. We hope this review aptly commemorates adecade of research on computational prediction of complexes and constitutes avaluable reference for further advancements in this exciting area.
机译:物理相互作用蛋白的复合物构成负责驱动细胞内生物过程的基本功能单元。因此,对整个复合体进行忠实的重建对于理解细胞的功能组织至关重要。在本文中,我们讨论了迄今为止(大约在2003年至2015年之间)开发的用于从相互作用蛋白网络(PPI网络)中识别复合物的计算方法的关键贡献。我们深入评估了这些方法在酵母PPI数据集上的性能,并突出了这些方法面临的挑战,尤其是稀疏和次要复合物的检测以及重叠复合物的识别。我们描述了用于通过PPI网络集成各种信息(包括蛋白质的表达谱和3D结构)以了解复合物动力学的方法,以了解复合物动力学,例如,基于时间的复合物亚基组装和由内在无序的蛋白质形成的模糊复合物。最后,我们讨论了鉴定人类疾病中功能失调的复合物的方法,这一应用对于了解疾病的机理和发现新的治疗靶标具有重要的价值。我们希望这篇评论能够恰当地纪念有关复合物的计算预测研究的兴起,并为这一激动人心的领域的进一步发展提供宝贵的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号